Chemical Bonding | Ionic bonding | Covalent bonding

No comments:
Ionic bonding:In ionic bonding, electrons are completely transferred from one atom to another. In the process of either losing or gaining negatively charged electrons, the reacting atoms form ions. The oppositely charged ions are attracted to each other by electrostatic forces, which are the basis of the ionic bond.

Covalent bonding:The second major type of atomic bonding occurs when atoms share electrons. As opposed to ionic bonding in which a complete transfer of electrons occurs, covalent bonding occurs when two (or more) elements share electrons. Covalent bonding occurs because the atoms in the compound have a similar tendency for electrons (generally to gain electrons). This most commonly occurs when two nonmetals bond together.

Multiple Bonds: For every pair of electrons shared between two atoms, a single covalent bond is formed. Some atoms can share multiple pairs of electrons, forming multiple covalent bonds. For example, oxygen (which has six valence electrons) needs two electrons to complete its valence shell.

Chemical kinetics

No comments:
Chemical kinetics

The rate of a chemical reaction is a measure of how the concentration or pressure of the involved substances changes with time. Analysis of reaction rates is important for several applications, such as in chemical engineering or in chemical equilibrium study.

Rates of reaction depends basically on:

Reactant concentrations, which usually make the reaction happen at a faster rate if raised through increased collisions per unit time,

Surface area available for contact between the reactants, in particular solid ones in heterogeneous systems. Larger surface area leads to higher reaction rates.

Pressure, by increasing the pressure, you decrease the volume between molecules. This will increase the frequency of collisions of molecules.

Activation energy, which is defined as the amount of energy required to make the reaction start and carry on spontaneously. Higher activation energy implies that the reactants need more energy to start than a reaction with a lower activation energy.

Temperature, which hastens reactions if raised, since higher temperature increases the energy of the molecules, creating more collisions per unit time,

The presence or absence of a catalyst. Catalysts are substances which change the pathway (mechanism) of a reaction which in turn increases the speed of a reaction by lowering the activation energy needed for the reaction to take place. A catalyst is not destroyed or changed during a reaction, so it can be used again.

For some reactions, the presence of electromagnetic radiation, most notably ultraviolet, is needed to promote the breaking of bonds to start the reaction. This is particularly true for reactions involving radicals.

Reaction rates are related to the concentrations of substances involved in reactions, as quantified by the rate law of each reaction. Note that some reactions have rates that are independent of reactant concentrations. These are called zero order reactions.

Organic reactions

No comments:
Organic reactions encompass a wide assortment of reactions involving compounds which have carbon as the main element in their molecular structure. The reactions in which an organic compound may take part are largely defined by its functional groups.
Powered by Blogger.